96 research outputs found

    Synthesis of Graphene on Gold

    Get PDF
    Here we report chemical vapor deposition of graphene on gold surface at ambient pressure. We studied effects of the growth temperature, pressure and cooling process on the grown graphene layers. The Raman spectroscopy of the samples reveals the essential properties of the graphene grown on gold surface. In order to characterize the electrical properties of the grown graphene layers, we have transferred them on insulating substrates and fabricated field effect transistors. Owing to distinctive properties of gold, the ability to grow graphene layers on gold surface could open new applications of graphene in electrochemistry and spectroscopy.Comment: 8 pages, 4 figure

    Soft Graphene-Based Antennas for Ultrawideband Wireless Communication

    Get PDF
    Ensuring user-friendliness and the seamless integration of technology into the fabric is a key challenge both for academics and industry participants. Thus, textiles that provide a seamless command-oriented user interface, and are capable of wireless communication have been an increasingly popular topic in recent years. In the field of textile antennas, patch antennas either with the use of embroidering techniques, conductive fabrics or inkjet-printing are leading the way over traditional bulky antennas. However, there are still significant problems in additive antenna fabrication such as the need to use metallic components as the conductive element which quickly becoming corroded and oxidised and also lead to high material costs. The main objective of this study is to develop graphene-based antennas for smart textiles that push the state-of-the-art in wireless body-centric systems, by utilising traditional textile manufacturing techniques. Hence, this research suggests a graphene-based antenna on a textile substrate, where the conformity of the antenna is highly desirable for wearable and body-centric applications. The designed antenna consists of a coplanar-waveguide-fed planar inverted cone-shaped patch geometry, aiming at ultrawideband antennas that work in a wide spectrum from 3.1 to 10.6GHz

    Graphene-based soft wearable antennas

    Get PDF
    Electronic textiles (e-textiles) are about to face tremendous environmental and resource challenges due to the complexity of sorting, the risk to supplies and metal contamination in textile recycling streams. This is because e-textiles are heavily based on the integration of valuable metals, including gold, silver and copper. In the context of exploring sustainable materials in e-textiles, we tested the boundaries of chemical vapour deposition (CVD) grown multi-layer (ML) graphene in wearable communication applications, in which metal assemblies are leading the way in wearable communication. This study attempts to create a soft, textile-based communication interface that does not disrupt tactile comfort and conformity by introducing ML graphene sheets. The antenna design proposed is based on a multidisciplinary approach that merges electromagnetic engineering and material science and integrates graphene, a long-lasting alternative to metal components. The designed antenna covers a wide bandwidth ranging from 3 GHz to 9 GHz, which is a promising solution for a high data rate and efficient communication link. We also described the effects of bending and proximity to the human body on the antenna's overall performance. Overall, the results suggested that graphene-based soft antennas are a viable solution for a fully integrated textile-based communication interface that can replace the current rigid, restrictive and toxic approaches, leading to a future where eco-friendliness and sustainability is the only way forward
    • …
    corecore